

Introduction

The SECU-16TM module allows 8 inputs and 8 low-current relay outputs to be added to an ADICONTM control system. The inputs may be supervised (switch closure), analog, or 4-20mA.

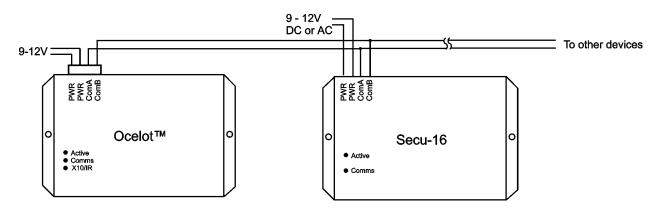
Specifications

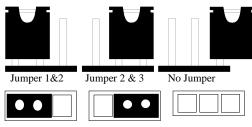
Power:	Input Voltage Input Current Max	9 - 12V DC or AC 200mA		
Inputs:	8 2-wire inputs, Analog $(0 - 5VDC)$ or Supervised			
Outputs:	8 Relay outputs 24VDC, 0.5 Amp			
Dimensions:	5.5"W x 3.25"L x 1.38"D			
Operating Temperature:	0°C to 70°C			

Setup

Remove the SECU-16TM top cover.

Connect the power supply to the two screw terminals labeled POWER. Connect the COM A and COM B terminals to the ADICONTM bus (see Figure 1).




Figure 1. Typical Wiring Diagram

Three types of inputs may be used on the SECU-16TM, supervised, analog, and 4-20mA. A supervised input is a passive, non-current supplying input such as a relay or switch. An analog input provides a varying voltage such as a light sensor. Input types are controlled by the jumpers as shown Table 1.

Jumpers P2 – P9 control the type if inputs used. P2 controls input 1, P3 controls input2, etc.

Input Type	P2 – P9
Supervised	2-3
4-20mA	1-2
Analog	Off

Table 1. Jumper Settings

To use an input as a supervised input a 1K Ohm resistor (supplied) must be placed across the input as shown in Figure 2.

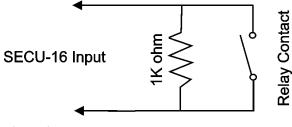


Figure 2

Operation

ADICONTM LED Codes

ACTIVE led – Slow Blink, Module has a valid address ACTIVE led – Rapid Blink, Auto Address mode active COMMS led – Blinks rapidly during ADICON[™] communications

Parameter	Function		
1	Module Address		
2	Low Analog Threshold		
3	High Analog Threshold		
10	Analog Value Input 1		
11	Analog Value Input 2		
12	Analog Value Input 3		
13	Analog Value Input 4		
14	Analog Value Input 5		
15	Analog Value Input 6		
16	Analog Value Input 7		
17	Analog Value Input 8		

Table 2. SECU-16[™] Parameters

Inputs and outputs are represented by I/O points within a module. The SECU-16TM has 16 I/O points, input 1 is represented by I/O point #0, input 2 is I/O Point #1, etc. Relay 1 is represented by I/O point #8, relay 2 is I/O point # 9 and so forth.

Supervised Inputs

A supervised input is a switch or relay type input. The SECU-16[™] will report OFF when the switch is open and ON when the switch is closed. See the example below on using a supervised input.

Line#	Program Text	Comments
1	If Module# 2/ Point# 0 Turns ON	If the front door opens
2	Then Module# 2/ Point# 8 Turns ON	Sound alarm connected to 1st relay
3	If Module# 2/ Point# 0 Is OFF	If front door closes
4	Then Module# 2/ Point# 8 Turns OFF	Turn off alarm connected to 1st relay

Analog Inputs

Analog inputs are inputs with a voltage that can vary from 0 - 5VDC such as a light sensor. The SECU-16TM will read an analog input and compare the value to the low and high threshold parameters. If the analog value is between the low and high thresholds the SECU-16TM will report that the input is OFF. If the analog input value is lower than the low threshold or higher than the high threshold the SECU-16TM will report that the input is ON.

Setting Threshold Values

Threshold and analog values are determined using the following formula:

To determine the analog reading of an known input voltage:

Analog Reading = Sensor Voltage x (256 / 5) = Sensor Voltage x 51.2

Example: If the analog voltage from a light sensor is 2 volts the analog reading would be $2 \ge (256/5) = 102$

To determine the voltage of an analog reading use:

Voltage = Analog Reading x (5 / 256) = Analog Reading x 0.01953

Example: If the high threshold is 192 the voltage would be $192 \ge 5/256 = 3.75V$

The threshold values are stored in parameters 2 and 3 (see Table 2). C-MaxTM is used to change a parameter value. Below is a sample screen of the Module parameter utility

Mod# Param 1 Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 1 1 64 192 0 230 92 247 2	🖆 Module Parameter Access 📃 🗌 🗙						×			
2 3 3 4 5 4 6 Change Parameter Data X 5 6 Change Parameter 3 on Module 1 to: 192 8 9 X Cancel 10 10 10 10	Mo	d#	Param 1	Param 2	Param 3	Param 4	Param 5	Param 6	Param 7	
3 4 5 6 Change Parameter Data K Change Parameter 3 on Module 1 to: 192 8 9 10 X	1		1	64	192	0	230	92	247	
4 5 5 Change Parameter Data 6 Change Parameter 3 on Module 1 to: 7 192 8 9 ✓ OK 10 ✓ Cancel	2									
5 Change Parameter Data 6 Change Parameter 3 on Module 1 to: 7 192 8 K 9 K 10 K	3									
5 6 6 Change Parameter 3 on Module 1 to: 7 192 8 Image: Cancel 9 Image: Cancel 10 Image: Cancel	4			Change I	Daramatar D					
7 192 8 ✓ 9 ✓ 10 ✓	5			change r	arameter D	dld				
8 9 10 K Cancel	6			Change Parameter 3 on Module 1 to:						
8 9 X Cancel	7			192						
9	8					_				
	9					×	Cancel			
	10									
	11									-
	┛		•						•	
Requesting Parameter 12 Password: **		Request	ing Parameter	12	Passv	vord:			<u>C</u> lose	

The threshold values can also be used to perform reverse logic. Lets say for example you want an input to be OFF when closed and ON when open, such as a door sensor in a security system. This can be done by setting the low threshold to 0 and the high threshold to 128. If you wanted to have the input report OFF when open and ON when closed, set the low threshold to 128 and the high threshold to 255. This can be done with analog or supervised inputs.

Example of Analog Input: Using a light sensor to turn outside lights on and off

First determine the threshold voltages of when you want the lights to turn on and off. For our example we will use 1.5V(77) to turn the lights on and 3.5V(179) to turn the lights off. The code example below shows how to turn the lights off after sunrise only if there is enough light and turn the lights off after dusk when dark enough. In this example, the more light on the sensor the smaller the analog reading.

Line#	Program Text	Comments
1	If Time of Dayis = Sun rise + 0 minute(s)	If it's sunrise
2	And Module#1/Param#10 is<77	And light Level is less than 77
3	Then Module#1/Point#8 Turns OFF	Turn the light off
4	If Time of Day is = Sunset + 0 minute(s)	If it's sunset
5	And Module#1/Param#10 is>179	And light level is greater than 179
6	Then Module#1/Point#8 Turns ON	Turn light on